Clinical Pharmacologic Characteristics of Taletrectinib Maurice Pérol,¹ Nathan A. Pennell,² Lyudmila Bazhenova,³ Chao Li,⁴ Jiyuan Guo,⁴ Feiwu Ran,⁴ Wenfeng Chen,⁴ Wei Wang,⁴ Caicun Zhou^{5,6} ¹Department of Medical Oncology, Léon Bérard Cancer Center, Lyon, France; ²Cleveland Clinic Taussig Cancer Institute, OH, USA; ³University of California San Diego Moores Cancer Center, San Diego, CA, USA; ⁴Nuvation Bio, New York, NY, USA; ⁵Department of Medical Oncology, Shanghai Pulmonary Hospital and Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China; China; Pepartment of Medical Oncology, East Hospital, Tongji University School of Medicine, Shanghai, China; Pepartment of Medical Oncology, East Hospital, Tongji University School of Medicine, Shanghai, China; Pepartment of Medical Oncology, East Hospital, Tongji University School of Medicine, Shanghai, China; Pepartment of Medical Oncology, East Hospital, Tongji University School of Medicine, Shanghai, China; Pepartment of Medical Oncology, East Hospital, Tongji University School of Medicine, Shanghai, China; Pepartment of Medical Oncology, East Hospital, Tongji University School of Medicine, Shanghai, China; Pepartment of Medical Oncology, East Hospital, Tongji University School of Medicine, Shanghai, China; Pepartment of Medical Oncology, East Hospital, Tongji University School of Medicine, Shanghai, China; Pepartment of Medical Oncology, East Hospital, Tongji University School of Medicine, Shanghai, China; Pepartment of Medical Oncology, East Hospital, Tongji University School of Medicine, Shanghai, China; Pepartment of Medical Oncology, East Hospital, Tongji University School of Medicine, Shanghai, China; Pepartment of Medical Oncology, East Hospital, Tongji University School of Medicine, Shanghai, China; Pepartment of Medical Oncology, East Hospital, Pepartment of Medical Oncology, Pepa Scan the QR code to download the poster ### Background - Taletrectinib is an oral, potent, CNS-active, selective, next-generation ROS1 inhibitor^{1,2} - Across two Phase 2 studies, TRUST-I and TRUST-II, taletrectinib showed robust, durable efficacy and favorable safety in patients with ROS1+ NSCLC³ - Taletrectinib (600 mg QD) is currently approved in China and the United States for the treatment of adult patients with locally advanced or metastatic ROS1+ NSCLC^{4,5} - Here, we report the key findings from pharmacologic studies of taletrectinib #### **Abbreviations** AUC, area under the curve; AUC_{inf}, area under the concentration-time curve from zero hours to infinity; AUC_{last}, area under the plasma concentration-time curve from time zero to time of the last quantifiable concentration; BCRP, breast cancer resistance protein; CI, confidence interval; C_{max}, maximum plasma concentration; CNS, central nervous system; CYP, cytochrome P450; DDI, drug-drug interaction; GMR, geometric mean ratio; IQR, interquartile range; MATE, multidrug and toxin extrusion protein; NSCLC, non-small cell lung cancer; P-gp, p-glycoprotein; PK, pharmacokinetics; Q, quartile; QD, once daily; ROS1, ROS proto-oncogene 1; t_{1/2}, terminal half-life; t_{max}, time of maximum concentration #### References - 1. Katayama R, et al. *Nat Commun* 2019;10:3604 - 2. Nagasaka M, et al. *Future Oncol* 2023;19:123–135 - 3. Pérol M, et al. *J Clin Oncol* 2025;43:1920–1929 4. Nuvation Bio Press Release. Accessed July 09, 2025. https://investors.nuvationbio.com/news/newsdetails/2025/Nuvation-Bio-Receives-Approval-from-Chinas-National-Medical-Products-Administration-for-Taletrectinib-for-Patients-with-Advanced-ROS1positive-Non-Small-Cell-Lung-Cancer - 5. IBTROZI™ (taletrectinib) Prescribing Information 2025 #### Acknowledgments - We would like to thank all participants, the study investigators, and their staff - This study was sponsored by Nuvation Bio Inc. - Medical writing support was provided by Flaminia Fenoaltea, MSc, and Victoria Eyre-Brook, PhD, of Ashfield MedComms, an Inizio company, and was funded by Nuvation Bio Inc. - The clinical pharmacologic characteristics of taletrectinib were evaluated in 10 Phase 1 or 2 clinical studies: - Five Phase 1 studies in healthy participants: - To evaluate DDIs, absorption, metabolism, and elimination of taletrectinib - Five Phase 1 or 2 studies in patients with cancer: - To evaluate repeat-dose PK (50–1200 mg QD taletrectinib), including PK across subgroups ## **Results: Clinical PK** - Multiple-dose studies evaluating taletrectinib at 50–1200 mg QD were conducted in patients with cancer - Taletrectinib AUC exposures increased in a dose-proportional manner for 50–1200 mg QD doses (Figure 1) - Taletrectinib was absorbed quickly after oral administration, with a median t_{max} between 2–6 hours - Steady state was reached by Day 8 after 7 days of QD dosing, with an accumulation ratio of 3.3–4.5 at 600 mg QD - The mean t_{1/2} was approximately 80–100 hours in healthy participants (t_{1/2} could not be calculated in patients with cancer); effective t_{1/2} was approximately 66 hours, supporting QD dosing - Plasma protein binding was concentration-dependent, with lower binding rates observed at higher concentrations, ranging from 96.5% with 100 ng/mL to 92.6% with 10,000 ng/mL - The apparent steady state volume of distribution in patients with cancer was estimated to be 9820 L, indicating wide tissue distribution - PK parameters were similar between healthy participants and patients with cancer #### Figure 1. PK Parameter Dose Linearity: AUC_{last} vs Dose Over the 50–1200 mg Repeated Oral Dose Range (Steady State) #### Pooled data from Phase 1 and 2 studies; data for the 600 mg QD dose are exclusively from Phase 2. ## Results: Metabolism and Elimination - From a clinical mass balance study in eight healthy adult males, of a single oral dose of 200 mg taletrectinib, with a radioactive tracer to follow the elimination path (5 µCi [14C]-taletrectinib), at least 80% of the dose was absorbed - The liver is the major route of elimination, with 75% of the dose recovered in feces; renal elimination plays a minor role, with only 11% of the dose recovered in urine (Figure 2) Figure 2. Metabolism and Elimination of Taletrectinib # **Results: Population PK** At 600 mg QD, no clinically significant PK differences in steady state average concentration were observed based on age, sex, weight, mild hepatic impairment, or mild-to-moderate renal impairment (Figure 3) #### Figure 3. Population PK Analysis of Steady State **Average Concentration** ## Results: Drug-Drug Interactions - In vitro results indicated that CYP3A4 is the primary enzyme for metabolizing taletrectinib and that taletrectinib may: - Inhibit CYP3A4, CYP2D6, CYP2C8, P-gp, BCRP, MATE1, MATE2-K - Induce CYP1A2, CYP3A - Taletrectinib has pH-dependent solubility and may be affected by changes in pH, such as when using proton pump inhibitors - Clinical DDI studies were therefore conducted in healthy participants to evaluate the effect of coadministering strong CYP3A4 modulators, proton pump inhibitors, and P-gp substrates on taletrectinib PK or vice versa - Itraconazole (strong CYP3A4 inhibitor) increased plasma C_{max} and AUC_{inf} of taletrectinib, while rifampin (strong CYP3A4 inducer) decreased C_{max} and AUC_{inf} (Figure 4) - Omeprazole (proton pump inhibitor) decreased C_{max} and AUC_{inf} of taletrectinib (*Figure 4*) - Taletrectinib had no clinically significant effect on digoxin (P-gp substrate) PK exposure (data not shown) ### Figure 4. Impact of Coadministration With Other Drugs on Taletrectinib Exposure #### Conclusions - Taletrectinib shows dose-proportional PK with a long $t_{1/2}$, enabling QD dosing - At the approved taletrectinib dose of 600 mg QD, PK parameters were consistent across demographic subgroups and were not significantly affected by mild hepatic impairment or mild-to-moderate renal impairment - Since metabolism of taletrectinib primarily occurs via the CYP3A4 enzyme, CYP3A4 modulators may have an effect on taletrectinib exposure and this should be considered in clinical practice - Additionally, proton pump inhibitors appear to impact taletrectinib exposure and this should be factored into prescribing practices